tepkit.core.high_symmetry_points.HighSymmetryPoints2D#
- class tepkit.core.high_symmetry_points.HighSymmetryPoints2D(b_lattice: tepkit.utils.typing_tools.NumpyArray3x3, bravais_lattice_2d=None, text_style: str = None, path_style: str = None)#
A class to manage the high symmetry points of a 2D material.
Attributes#
Attribute |
Default Value |
Description |
---|---|---|
|
|
|
|
|
Used for get_2d_bz_kpoints() method. |
|
|
|
|
|
|
|
|
|
|
|
The style of the choices of the high symmetry paths. obj.path_style = Setyawan2010 / Tepkit2024 |
|
|
The style of the names of the high symmetry points. obj.text_style = Setyawan2010 / Setyawan2010_tex / Tepkit2024 / Tepkit2024_tex |
|
|
obj.df = pd.DataFrame |
|
|
Properties#
|
Exceptions#
Common base class for all non-exit exceptions. |
|
Common base class for all non-exit exceptions. |
Methods#
|
Instantiation a Plotter by a Poscar. |
|
|
|
计算倒晶格 gamma 角的类型 |
|
|
|
|
|
根据晶格类型和角度的组合自动获取高对称路径数据。 |
|
|
|
|
|
|
|
|
|
All Members#
- boundary_tokens_dict
- half_boundary_tokens_dict
Used for get_2d_bz_kpoints() method.
- right_angle_precision = 0.001
- default_text_style = 'Setyawan2010_tex'
- default_path_style = 'Setyawan2010'
- path_style
The style of the choices of the high symmetry paths. obj.path_style = Setyawan2010 / Tepkit2024
- text_style
The style of the names of the high symmetry points. obj.text_style = Setyawan2010 / Setyawan2010_tex / Tepkit2024 / Tepkit2024_tex
- df
obj.df = pd.DataFrame
- bravais_lattice_2d: tepkit.core.symmetry.BravaisLattice2D
- property lattice_gamma_type
- classmethod from_poscar(poscar, with_2pi: bool = True, text_style: str = None, path_style: str = None)
Instantiation a Plotter by a Poscar.
- add_token_texts()
- get_gamma_angle_type()
计算倒晶格 gamma 角的类型
- get_boundary_tokens(mode='full') list[str]
- get_boundary_df(mode='full')
- get_paths_tokens() list[list[str]]
根据晶格类型和角度的组合自动获取高对称路径数据。 :return: e.g. [[“G”, “D1”, “B”, “C2B”, “C2”, “G”]]
- get_paths_df()
- get_df_by_tokens(tokens: list[str] | None = None)
- get_dict(key_column: str = None, value_column: str = None, tokens: list[str] = None) dict
- get_list(column=None, tokens=None) list
- get_texts(tokens)